\qquad
\qquad

\qquad
Rewrite a \quad In order to write a logarithmic expression as an exponential expression, we Logarithmic as an Exponential

Exponential
$\frac{\text { Rewrite an }}{\text { Exponential as a }}$
Logarithmic
Special Types of
Logarithms

Natural Log \& e^{x}

Example: $\log _{3} 243=5 \quad \longrightarrow \quad 3^{5}=243$

1. $\log _{8} 2=\frac{1}{3}$

YOU TRY:

2. $\log _{4} 4=1$
3. $\log _{7} \frac{1}{49}=-2$

In order to write an exponential expression as a logarithmic expression, we say to: "ROLL LIKE A LOG"
Example: $4^{\Omega}=64 \quad \longrightarrow \quad \log _{4} 64=3$

1. $5^{0}=1$

YOU TRY:
2. $\frac{1}{2}^{-1}=2$
3. $3^{-3}=\frac{1}{27}$

Special Types of Logarithms write the base when it is equal to 10 .

Example: $\log _{10} 6=\log 6$

Similar to π, " e " is a mathematical constant where $e=2.7182818284$...
"Ln" (called the "natural log").
are logarithms with base $=$ e. It's denoted as

$$
\text { Example: } \log _{e} 12=\ln 12
$$

Rewrite the exponential expression as a logarithmic expression.

1. $10^{4}=1000$
2. $e^{4}=54.598$

Rewrite the logarithmic expression as an exponential expression.
3. $\ln 8=\mathbf{2 . 0 7 9}$
4. $\log 4=0.602$

Summary

Summarize the lesson in your own words

