Monday 3/2/20

- 1. Grab Notes, EOC Review Packet
- 2. Put your phones/earbuds away
- 3. Warm-Up: Complete #1-5 in EOC Review
- 4. Congruent Triangles Notes

Jul 31-9:37 PM

Warm-Up:

1) A regular pentagon is centered about the origin and has a vertex at (0, 4). Which transformation maps the pentagon to itself?

A Transfer tion of the m

B - reflection across the v-avie

C a clockwise rotation of 100° about the origin

D.a clockwise rotation of 144° about the origin

 $A(v,v) \rightarrow (x-6,y+2)$

A parallelogram has vertices at (0, 0), (0, 6), (4, 4), and (4, -2). Which transformation maps the parallelogram to itself?

4) If triangle XYZ is rotated 90° clockwise about the origin to form triangle X'Y'Z', what are the coordinates of Y'?

5) Look at quadrilateral QRST.

What is the image point R after a clockwise rotation of 270 degrees about the origin?

- A. (6, -3) B. (-3, 6)
- (C.)-6, 3)
- D. (3, -6)

HW Answers

Aug 23-5:46 PM

What am I learning today?

Learning Objective 2B.2

How to identify congruent triangles.

Same size/shape

What will I do to show that I have learned it?

I can...Use congruency statements and marks to match corresponding sides and angles in congruent triangles.

Jul 31-6:18 PM

<u>Congruent Triangles</u> - Two triangles that ALL 3 <u>sides</u> and <u>angles</u> are CONGRUENT!

<u>Corresponding Parts</u> - Parts of congruent triangles that "<u>MATCH</u>"

Must follow the SAME ORDER

How can we write three different congruency statements?

Aug 23-5:34 PM

Complete the congruence statement

$$\Delta NKJ \cong \Delta \mathbf{LKM}$$

Aug 23-5:39 PM

Complete the congruence statement

Complete the congruence statement

Aug 23-5:39 PM

Corresponding Parts with Diagrams

If $\triangle ABC \cong \triangle DEF$ then...

- 1. $BC \cong EF$
- $2.\angle A \cong 4D$
- 3.ED≅BA
- $4 \angle D \cong 4A$

Corresponding Parts with No Diagrams

If $\Delta CAT \cong \Delta DOG$ then...

- 1. $AC \cong \overline{OD}$
- $2.\angle T\cong 46$
- 3. $GO \cong TA$
- $4.\angle ATC \cong 40GD$

Aug 23-5:40 PM

YOU CANNOT SKIP A SIDE <u>AND</u> AN ANGLE AT THE SAME TIME!

Aug 23-5:40 PM

YOU CANNOT SKIP A SIDE <u>AND</u> AN ANGLE AT THE SAME TIME!

Aug 23-5:41 PM

Aug 23-5:41 PM

Share a side

Reason: Reflexive Property

How are these triangles congruent?

Feb 13-5:45 PM

Vertical Angles

Reason: Vertical Angles are congruent

How are these triangles congruent?

Yes, by AAS (SAA) DSTR=DVTU

How are these triangles congruent?

Feb 13-5:45 PM

Alternate Interior Angles

Reason: Alt. Int. angles are congruent

How are these triangles congruent?

Are these triangles congruent? If so, write a congruence statement.

Aug 23-5:42 PM

Are these triangles congruent? If so, write a congruence statement.

Are these triangles congruent?

If so, write a congruence statement.

Aug 23-5:45 PM

Are these triangles congruent? If so, write a congruence statement.

State what ADDITIONAL information is required in order to know the triangles are congruent for the reason given.

Feb 14-2:22 PM

State what ADDITIONAL information is required in order to know the triangles are congruent for the reason given.

$$\Delta ABC \cong \Delta PET$$
 by SAS

$$\angle A \cong \angle P$$

$$AC \cong PT$$

$$BA \not\leftarrow EP$$

Classwork:

Complete the classwork about congruent triangles.

HW: Finish classwork

Jul 31-9:12 PM