Describe the direction of the correlation of each graph below:

Examples

Topic: Correlation

Main Ideas/ Questions

Strength

Notes

Very Strong Correlation – When the points lie very close to a line; the 'r' value is $r \ge +0.8$

Date:

Strong Correlation – When the points lie very close to a line; the 'r' value is $\pm~0.6 \le r < \pm~0.8$ (between)

Moderate Correlation – When the points lie close to a line; the 'r' value is $\pm 0.4 \le r < \pm 0.6$ (between)

Weak Correlation – When the points sort of make a line; the 'r' value is $\pm 0.2 \le r < \pm 0.4$ (between)

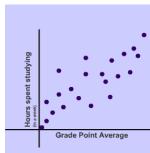
No Correlation – When the points do not make any line; the 'r' value is $r < 0.2\,$

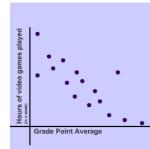
Examples

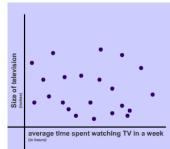
<u>Examples</u>: Describe the correlation (direction and strength) by using the correlation coefficient (r).

1.
$$r = 0.75$$

$$2. r = -0.5$$


3.
$$r = -0.96$$


$$4. r = 0.02$$


5.
$$r = 0.35$$

$$6. r = 0.15$$

<u>Examples</u>: Describe the correlation of the following scatterplots and estimate the correlation coefficient (r).

Characteristics of 'r'

- The closer to 1 or -1 the _____ the correlation
- It does _____ change when we change ____ of measurements
- It does _____ change if we _____ the explanatory and response variables
- It is ______ affected by outliers. When outliers are _____, the correlation increases in _____