\qquad Date: \qquad

Section I - Percentiles

Use the dot plot below to answer the questions.

1. Joseph could do 33 pushups in a minute. What is their percentile?
2. Patricia could do 31 pushups in a minute. What is their percentile?
3. Roderick could do 35 pushups in a minute. What is their percentile?

Section II - Solve for Z-Scores

4. Layla scored a 65 on her Spanish final exam. What was her z-score if the average on the test was a 69 and the standard deviation was 4?
5. Gabriela scored a 76 on her Statistics final exam. What was her z-score if the average on the test was an 84 and the standard deviation was 7 ?
6. Between Layla and Gabriela, who did relatively better on their final exam? Why?

Section III - Empirical Rule

7. The Unit 2 Statistics test had an average of 65 after 55 students took the test. Label the normal distribution if the $\sigma=5.5$.

a. What percentage of scores were between 59.5 and 70.5 ?
b. What percentage of scores were outside of 48.5 and 81.5 ?
c. What percentage of scores were less than 59.5?
d. What percentage of scores were between 59.5 and 81.5 ?
e. What percentage of scores were between 48.5 and 59.5?
f. What percentage of scores were between 65 and 76?
g. How many students made below a 65?
h. How many students made above an 81.5 ?
i. What score separated the top 16% ?
j. What score separated the bottom 2.5% ?

Section IV - Using the Z-table (Easy)

For the numbers below, find the percentile rank (two decimal places) (percent of individuals scoring BELOW):
8. $z=0.24$
9. $z=-1.25$
10. $z=0.08$
11. $z=-0.47$
12. $z=3.2$
13. $z=-2.3$
14. A fifth grader takes a standardized achievement test ($\mu=125$ and $\sigma=15$) and scores a 133 . What is the child's percentile rank?

Section V - Using the Z-table (Medium)

For the numbers below, find the percent of cases falling ABOVE the z-score:
15. $z=0.24$
16. $z=-1.25$
17. $z=0.08$
18. A patient recently diagnosed with Alzheimer's disease takes a cognitive ability test and scores a 51 . The mean on the test is 52 and has a standard deviation of 5 . What percentage of people scored higher on the cognitive test?

For the numbers below, find the percent of cases falling BETWEEN the z-score:
19. $-0.32<z<-0.23$
20. $0.03<z<2.7$
21. $-1.4<z<1.84$
22. Pat and Chris both took a spatial abilities test (mean $=80$, std. dev. $=8$). Pat scores a 76 and Chris scored a 94. What percent of individuals scored between Pat and Chris?
23. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6 . Assuming these raw scores form a normal distribution:
a. What is the probability of getting a raw score between 28 and 38 ?
b. What is the probability of getting a raw score between 41 and 44 ?

Section VI - Using the Z-Table Reverse

24. Find the z-score that gives a probability of 0.2810 .
25. Find the z-score that give the area above 0.1515 .
26. For a normal distribution, find the z-score that separates the distribution as follows:
a. Separate the highest 27% from the rest of the distribution.
b. Separate the lowest 42% from the rest of the distribution.
c. Separate the highest 70% from the rest of the distribution.
d. Separate the lowest 89% from the rest of the distribution.

Section VII - Solving for the observation (x-value) HINT: Z is given, set up equation and solve for x.

27. Sam took the ACT and his score was one standard deviation $(z=1)$ above the average. If the ACT has a mean of 20.8 and a standard deviation of 4.8, what was Sam's score?
28. Jimmy took the SAT and his Math section score was two standard deviations below $(z=-2)$ the average. If the Math section of the SAT has an average of 533 and a standard deviation of 100, what was Jimmy's math section score?

Section VIII - Solving for the observation (x-value) HINT: Use the table first to find the z-score, then solve for x.
29. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6 . Assuming these raw scores form a normal distribution:
a) What number represents the $70^{\text {th }}$ percentile (what number separates the lower 70% of the distribution)?
b) What number represents the $99.83^{\text {rd }}$ percentile?
30. Scores on the SAT form a normal distribution with $\mu=500$ and $\sigma=100$.
a) What is the minimum score necessary to be in the bottom 17% of the SAT distribution?
b) Find the range of values that defines the top 40% of the distribution of SAT scores.
31. If a math test scores were normally distributed with a mean of 81 and a standard deviation of 5 , what score is in the $90^{\text {th }}$ percentile?
32. If a Math test scores were normally distributed with a mean of 79 and a standard deviation of 7 , what score is in the $23^{\text {rd }}$ percentile?
33. If a Biology test scores were normally distributed with a mean of 67 and standard deviation of 3 , what score had a probability of 89.44% ?
34. If a factory created bolts that lengths followed a normally distribution with a mean of 3.5 inches and a standard deviation of 0.2 inches, what bolt length would be in the bottom 0.41% ?
35. Matthew scored in the $94.52^{\text {nd }}$ percentile on his IQ test which has an average of 110 and $\sigma=20$. What did he score on his IQ test?

